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PREFACE

A User’s Guide to ORGANIC CHEMISTRY: Structure and 
Function

In this textbook, Organic Chemistry: Structure and Function, we present a logical framework 
for understanding contemporary organic chemistry. This framework emphasizes that the 

structure of an organic molecule determines how that molecule functions, be it with respect to 
its physical behavior or in a chemical reaction. In the seventh edition, we have strengthened 
the themes of understanding reactivity, mechanisms, and synthetic analysis to apply chemical 
concepts to realistic situations. We have incorporated new applications of organic chemistry 
in the life and material sciences. In particular, we have introduced some of the fundamentals 
of medicinal chemistry in over 70 new entries describing drug design, absorption, metabolism, 
mode of action, and medicinal terminology. We have expanded on improving students’ 
ability to grasp concepts in a number of sections (“Keys to Success”) and on their problem-
solving skills by presenting step-by-step guides in Worked Examples. These and other 
innovations are illustrated in the following pages. Organic Chemistry: Structure and Function
is offered in an online version to give students cost-effective access to all content from the 
text plus all student media resources. For more information, please visit our Web site at 
http://ebooks.bfwpub.com.

CONNECTING STRUCTURE AND FUNCTION
This textbook emphasizes that the structure of an organic molecule determines 
how that molecule functions. By understanding the connection between 
structure and function, we can learn to solve practical problems in organic 
chemistry.

Chapters 1 through 5 lay the foundation for making this connection. 
In particular, Chapter 1 shows how electronegativity is the basis for 
polar bond formation, setting the stage for an understanding of polar 
reactivity. Chapter 2 makes an early connection between acidity and 
electrophilicity, as well as their respective counterparts, basicity-
nucleophilicity. Chapter 3 relates the structure of radicals to their 
relative stability and reactivity. Chapter 4 illustrates how ring size 
affects the properties of cyclic systems, and Chapter 5 provides an 
early introduction to stereochemistry. The structures of haloalkanes 
and how they determine haloalkane behavior in nucleophilic 
substitution and elimination reactions are the main topics of Chapters 
6 and 7. Subsequent chapters present material on functional-group 
compounds according to the same scheme introduced for haloalkanes: 
nomenclature, structure, spectroscopy, preparations, reactions, and 
biological and other applications. The emphasis on structure and 
function allows us to discuss the mechanisms of all new important 
reactions concurrently, rather than scattered throughout the text. We 
believe this unif ed presentation of mechanisms benef ts students by 
teaching them how to approach understanding reactions rather than 
memorizing them.

cis-9-Octadecenoic acid, also 
known as oleic acid, makes up 
more than 80% of natural olive 
oil extracted from the fruit of 
the European olive tree. It is 
acknowledged to be one of 
the most benef cial of all the 
food-derived fats and oils for 
human cardiovascular health. 
In contrast, the isomeric 
compound in which the double 
bond possesses trans instead 
of cis geometry has been found 
to have numerous adverse 
health effects.

olid shortening from 
Remarkably, the only 
 difference is that the 
on double bonds and 
oils are derivatives of 
compounds containing 

ter and in Chapter 12, 
erties, generation, and 

chapters, we learned 
, two major classes of 

gle-bonded functional 
tion under appropriate 

n this chapter we return 
lore some additional 
tcome. We shall then 
amine the reactions of 
ver that they may be converted back into single-bonded sub-
dition. Thus, we shall see how alkenes can serve as interme-
nversions. They are useful and economically valuable starting 
tic f bers, construction materials, and many other industrially 
ample, addition reactions of many gaseous alkenes give oils as 
class of compounds used to be called “olef ns” (from oleum 
deed, “margarine” is a shortened version of the original name, 
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UNDERSTANDING AND VISUALIZING REACTIONS 
AND THEIR MECHANISMS
The emphasis on structure (electronic and spatial) and function (in radical and ionic form) 
in the early chapters primes students for building a true grasp of reaction mechanisms, 
encouraging understanding over memorization.

Because visualizing chemical reactivity can be challenging for many students, we use 
many different graphical cues, animations, and models to help students envisage reactions 
and how they proceed mechanistically.

examples follow.

1. Dissociation of a polar covalent bond into ions

General case: A� �ðBBAO �
Movement of an electron pair converts

the A–B covalent bond into a lone pair on atom B

The direction in which the pair of electrons moves depends on which of the two atoms 
is more electronegative. In the general case above, B is more electronegative than A, so B 
more readily accepts the electron pair to become negatively charged. Atom A becomes 
a cation.

Specifi c example (a): �ðH Cl�š ðCl�šH� �ð

Chloride is released with
an additional lone pair

derived from the broken bond
Arrow points to Cl, the more

electronegative atom

Dissociation of the acid HCl to give a proton and chloride ion exemplif es this process: 
When breaking a polar covalent bond in this way, draw the curved arrow starting at the 
center of the bond and ending at the more electronegative atom.

Specifi c example (b): �C

CH3 CH3

CH3CH3

BrH3C ð�š ðBr�š
�CH3C

�ð

In this example, dissociation features the breaking of a C–Br bond. You will note that 
its essential features are identical to those of example (a).

FREE103_ch02_049-096.indd Page 57  22/03/13  9:46 PM f-402 /204/WHF00201/work/indd/ch02

Section 8-7: The product alkylmetal does not attack the haloalkane from which it is made 
(Real Life 8-3).

In Summary Alkyllithium and alkylmagnesium reagents add to aldehydes and ketones to 
give alcohols in which the alkyl group of the organometallic reagent has formed a bond to 
the original carbonyl carbon.

The reactions introduced so far are part of the “vocabulary” of organic chemistry; unless 
we know the vocabulary, we cannot speak the language of organic chemistry. These reactions 
allow us to manipulate molecules and interconvert functional groups, so it is important to 
become familiar with these transformations—their types, the reagents used, the conditions 
under which they occur (especially when the conditions are crucial to the success of the 
process), and the limitations of each type.

This task may seem monumental, one that will require much memorization. But it is 
made easier by an understanding of the reaction mechanisms. We already know that reac-
tivity can be predicted from a small number of factors, such as electronegativity, coulombic 
forces, and bond strengths. Let us see how organic chemists apply this understanding to 
devise useful synthetic strategies, that is, reaction sequences that allow the construction of 
a desired target in the minimum number of high-yielding steps.

8-9  KEYS TO SUCCESS: AN INTRODUCTION 
TO SYNTHETIC STRATEGY

The total synthesis of the complex 
natural product strychnine (Sec-
tion 25-8), containing seven fused 
rings and six stereocenters, has 
been steadily improved over a 
half-century of development of 
synthetic methods. The f rst 
synthesis, reported in 1954 by 
R. B. Woodward (Section 14-9), 
started from a simple indole 
derivative (Section 25-4) and 
required 28 synthetic steps to give 
the target in 0.00006% overall 
yield. A more recent synthesis 
(in 2011) took 12 steps and 
proceeded in 6% overall yield.

(
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• NEW. Improved and expanded coverage of electron-pushing ar-
rows in Sections 2-2 and 2-3. The use of electron-pushing arrows, 
introduced in these sections, is reinforced in Section 6-3 and nu-
merous margin reminders in all subsequent chapters.

• NEW. Keys to Success sections teach and reinforce basic con-
cepts and problem-solving techniques.

• Chapter 2, Section 2-2: KEYS TO SUCCESS: USING CURVED 
“ELECTRON-PUSHING” ARROWS TO DESCRIBE CHEMICAL 
REACTIONS

• Chapter 3, Section 3-6: KEYS TO SUCCESS: USING THE 
“KNOWN” MECHANISM AS A MODEL FOR THE “UNKNOWN”

• Chapter 6, Section 6-9: KEYS TO SUCCESS: CHOOSING 
AMONG  MULTIPLE MECHANISTIC PATHWAYS

• Chapter 7, Section 7-8: KEYS TO SUCCESS: SUBSTITU-
TION VERSUS ELIMINATION—STRUCTURE DETERMINES 
 FUNCTION

• Chapter 8, Section 8-9: KEYS TO SUCCESS: AN INTRODUC-
TION TO SYNTHETIC STRATEGY

• Computer-generated ball-and-stick and space-fi lling models help students recognize 
steric factors in many kinds of reactions. Icons in the page margins indicate where model 
building by students will be especially helpful for visualizing three-dimensional structures 
and dynamics.

ReactionRReaction

Mechanism
Model Building

P r e f a c e

• Chapter 18, Section 18-7: COMPETI-
TIVE REACTION PATHWAYS AND THE 
INTRAMOLECULAR ALDOL CONDEN-
SATION

• Chapter 23, Section 23-1: THE CLAISEN 
CONDENSATION WORKS  BECAUSE 
HYDROGENS FLANKED BY TWO CAR-
BONYL GROUPS ARE ACIDIC

• Interlude: A Summary of Organic Reac-
tion Mechanisms, following Chapter 14, 
summarizes the relatively few types of re-
action mechanisms that drive the majority 
of organic reactions, thereby encouraging 
understanding over memorization.

• Electrostatic potential maps allow students to see how electron distributions affect the 
behavior of species in various interactions.

• Icons are employed to highlight the distinction between a reaction and its mechanism.

• Model-building icons encourage the student to build molecular models to illustrate the 
principle under discussion or to aid in the solution of a problem.
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• Reaction Summary Road Maps, found at the ends of Chapters 8, 9, 11, 12, 13, 15, 17, 19, 
20, and 21, provide one-page overviews of the reactivity of each major functional group. 
The Preparation maps indicate the possible origins of a functionality—that is, the precur-
sor functional groups. The Reaction maps show what each functional group does. In both 
maps, reaction arrows are labeled with particular reagents and start from or end at specif c 
reactants or products. Section numbers indicate where the transformation is discussed in 
the text.

STRONGER PEDAGOGY FOR SOLVING PROBLEMS
• NEW. WHIP problem-solving strategy is applied to Solved Exercises throughout the text.

What does the problem ask?

How to begin?

Information needed?

Proceed

Beginning in Chapter 1, we 
introduce a novel and powerful 
approach to problem solving, 
the WHIP approach. We teach 
students how to recognize the 
fundamental types of questions 
they are likely to encounter, and 
explain the solution strategy in 
full detail.

• All in-chapter Solved Exer-
cises begin with a Strategy 
section that emphasizes the 
reasoning students need to 
apply in attacking problems. 
The Solution arranges the 
steps logically and carefully, 
modeling good problem-
solving skills.

• Try It Yourself Exercises. Each in-chapter worked exercise is paired with a Try It Yourself 
problem that follows up on the concept being taught.

• Caution statements appear in many of the exercises, alerting students to potential pitfalls 
and how to avoid them.

6-30. Analyzing Substrate Structures for SN2 Reactivity
a. Which of the following compounds would be expected to react in an SN2 manner at a reasonable rate 
with sodium azide, NaN3, in ethanol? Which will not? Why not?

 (iii) Brðš�  (iv) OHš�  (v) 

Clðš�

 (vi) CNð

SOLUTION

Let us apply the WHIP approach to break down the process of solving this problem.

What is the problem asking? This may be obvious—one merely has to identify which of the 
compounds shown reacts with azide in ethanol via an SN2 process. However, there is a bit more 
to it, and the clue is the presence of the word “why” in the question. “How” and “why” questions 
invariably require a closer look at the situation, usually from a mechanistic perspective. It will be 
necessary to consider f ner details of the SN2 mechanism in light of the structures of each of the 
substrate molecules.

How to begin? Characterize each substrate in the context of the SN2 process. Does it contain a viable 
leaving group? To what kind of carbon atom is the potential leaving group attached? Are other rel-
evant structural features present?

Information needed? Does each of these six molecules contain a good leaving group? If necessary, 
look in Section 6-7 for guidance: To be a good leaving group, a species must be a weak base. Next, 
can you tell if the leaving group is attached to a primary, secondary, or tertiary carbon atom? See 
their def nitions in Section 2-6. Anything else? Section 6-10 tells you what to look for: steric hindrance 
in the substrate that may obstruct the approach of the nucleophile.

Proceed. We identify f rst the molecules with good leaving groups. Referring to Table 6-4, we see that, 
as a general rule, only species that are the conjugate bases of strong acids (i.e., with pKa values , 0) 
qualify. So, (i), (iv), and (vi) will not undergo SN2 displacement. They lack good leaving groups: 2NH2, 
2OH, and 2CN are too strongly basic for this purpose (thus answering the “why not” for these three). 
Substrate (ii) contains a good leaving group, but the reaction site is a tertiary carbon and the SN2 
mechanism is sterically very unfavorable. That leaves substrates (iii) and (v), both of which are pri-
mary haloalkanes with minimal steric hindrance around the site of displacement. Both will transform 
readily by the SN2 mechanism.
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A Wide Variety of Problem Types
Users and reviewers of past editions have often cited the end-of-chapter problems as a 
major strength of the book, both for the range of diff culty levels and the variety of practical 
applications. We highlight those end-of-chapter problems that are more diff cult with a 
special icon:

• Worked Examples: Integrating the Concepts include worked-out, step-by-step solutions 
to problems involving several concepts from within chapters and from among several chap-
ters. These solutions place particular emphasis on problem analysis, deductive reasoning, 
and logical conclusions.

• Team Problems encourage discussion and collaborative learning among students. They can 
be assigned as regular homework or as projects for groups of students to work on.
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REAL CHEMISTRY BY PRACTICING CHEMISTS

An Emphasis on Practical Applications
Every chapter of this text features discussions of biological, medical, and industrial 
applications of organic chemistry, many of them new to this edition. In particular, as 
mentioned at the beginning, we have introduced some of the fundamentals of medicinal 
chemistry in over 70 new entries describing drug design, absorption, metabolism, mode of 
action, and medicinal terminology. Other topics range from advances in the development of 
“green,” environmentally friendly methods in the chemical industry to new chemically based 
methods of disease diagnosis and treatment, and uses of transition metals and enzymes to 
catalyze reactions in pharmaceutical and medicinal chemistry. Some of these applications are 
found in the text discussion, others in the exercises and problems, and still others in the Real 
Life boxes. A new feature is margin entries called “Really?,” which are meant to stimulate 
students’ engagement by highlighting unusual and surprising aspects of the subject matter 
under discussion. A major application of organic chemistry, stressed throughout the text, is 
the synthesis of new products and materials. Many chapters contain specif c syntheses of 
biological and medicinal importance.

NEW entries include:

Cubical Atoms by G. N. Lewis (Ch. 1, Really?, p. 14)
Elements in the Universe (Ch. 1, Really?, p. 31)
Stomach Acid, Peptic Ulcers, Pharmacology, and Organic Chemistry (Ch. 2, Real Life 2-1, 

p. 61)
Acidic and Basic Drugs (Ch. 2, p. 63)
The Longest Man-Made Linear Alkane (Ch. 2, Really?, p. 78)
Food Calories (Ch. 3, Really?, p. 123)
Conformational Drug Design (Ch. 4, p. 148)
Male Contraceptives (Ch. 4, Real Life 4-3, p. 157)
Ibuprofen Enantiomerization (Ch. 5, Really?, p. 180)
Fluorinated Pharmaceuticals (Ch. 6, Real Life 6-1, p. 213)
Halomethane Fumigants (Ch. 6, Really?, p. 216)
Solvation and Drug Activity (Ch. 6, p. 231)
An SN2 Reaction at a Tertiary Carbon (Ch. 7, Really?, p. 269)
Alcohol Chain Length and Antimicrobial Activity (Ch. 8, p. 283)
Alcohol and Heartburn (Ch. 8, Really?, p. 284)
Don’t Drink and Drive: The Breath Analyzer Test (Ch. 8, Real Life 8-2, p. 294)
Protecting-Group Strategy (Ch. 9, p. 350)
Oxacyclopropane: The Warhead of Drugs (Ch. 9, p. 356)
Scottish Whisky in Space (Ch. 9, Really?, p. 360)
Carbon has 15 Known Isotopes (Ch. 10, Really?, p. 411)
Structural Characterization of Natural and “Unnatural” Products (Ch. 10, Real Life 10-5, p. 419)
Various Forms of Radiation and Their Uses (Ch. 10, p. 425)
Bond Strength and Polarity Correlate with IR Absorptions (Ch. 11, p. 456)
IR Thermography (Ch. 11, Really?, p. 458)
l-DOPA and Parkinson’s Disease (Ch. 12, p. 488)
Halohydroxylations in Nature (Ch. 12, p. 500)
Ethene is a Natural Plant and Fruit Hormone (Ch. 12, Really?, p. 522)
Carbon Allotropes: sp3, sp2, and sp (Ch. 13, p. 548)
Life is Under Kinetic Control (Ch. 14, Really?, p. 593)
Sunglasses on Demand (Ch. 14, p. 621)
The Sunburn Protection Factor (Ch. 15, Really?, p. 650)
Helicenes (Ch. 15, Really?, p. 660)
Sulfa Drugs: The First Antimicrobials (Ch. 15, p. 673)
Halogenated Drug Derivatives (Ch. 16, p. 700)
Sulfosalicylic Acid and Urine Testing (Ch. 16, Really?, p. 711)

Sunglasses on Demand

Self-darkening eyeglasses 
contain organic molecules that 
undergo thermally reversible 
photoisomerizations between 
two species that differ in their 
electronic spectra:

Absorbs only UV
light: transparent

Absorbs UV and
visible light

hv ⌬

O

O

The top molecule is transparent 
in the visible range but absorbs 
the sun’s UV rays to undergo 
electrocyclic ring opening to 
the bottom structure. The more 
extended conjugation in this 
isomer causes a shift of its �max 
to effect shading. In the dark, 
the system reverts thermally to 
its thermodynamically more 
stable state.
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Designer Drugs and Mass Spectral Fragmentation (Ch. 17, p. 746)
Hydrazone Hydrolysis for Drug Delivery (Ch. 17, p. 763)
Burnet Moths Use HCN for Chemical Defense (Ch. 17, Really?, p. 767)
Enolization Does Not Occur by Direct Proton Shift (Ch. 18, p. 794)
Medicinal Uses of the Tropical Plant Zingiber zerumbet (Ch. 18, Really?, p. 815)
Antibacterial Synthesis by Robinson Annulation: Platensimycin (Ch. 18, p. 819)
Action of Allegra (Ch. 19, p. 836)
Blocking Bitter Taste (Ch. 19, Really?, p. 837)
Polyanhydride Hydrolysis Releases Embedded Drugs (Ch. 20, p. 896)
Prodrugs (Ch. 20, p. 899)
Chocolate and Theobromine (Ch. 20, Really?, p. 903)
A Nitrile Drug for Breast Cancer (Ch. 20, p. 917)
Cocaine in the Environment (Ch. 21, Really?, p. 941)
Amine Protonation and Drug Activity (Ch. 21, p. 945)
Tropinone and Atropine (Ch. 21, p. 975)
Welcome Side Effects: Drug Switches (Ch. 21, p. 976)
Benzylic Metabolism of Drugs (Ch. 22, p. 984)
Some Like It Hot: Capsaicin (Ch. 22, p. 989)
Antioxidants (Ch. 22, Really?, p. 1014)
Dyes, Gram Stains, and Antibacterials (Ch. 22, Real Life 22-4, p. 1022)
Malondialdehyde and Macular Degeneration (Ch. 23, p. 1048)
Carbonic Acid (Ch. 23, p. 1068)
High Fructose Corn Syrup (Ch. 24, Really?, p. 1080)
NMR Spectra of Glucose (Ch. 24, p. 1083)
Removing Drugs from the Body: Glucuronides (Ch. 24, p. 1090)
Caramelization (Ch. 24, p. 1099)
Sweeteners (Ch. 24, Real Life 24-2, p. 1100)
An Aminodeoxysugar Drug (Ch. 24, p. 1107)
How Drugs Are Named (Ch. 25, p. 1123)
Heterocyclopropane Drug War Heads (Ch. 25, p. 1125)
Indole-Based Neurotransmitters (Ch. 25, p. 1135)
Hexaazabenzene (Ch. 25, Really?, p. 1137)
The Pharmacophore of Morphine (Ch. 25, p. 1147)
Penicillamine in Chelation Therapy (Ch. 26, p. 1172)
A Serine-Derived Spider Sex Pheromone (Ch. 26, p. 1173)
Misfolded Proteins and “Mad Cow” Disease (Ch. 26, p. 1183)
Bacteria Protect Their Cell Walls by Enantiomeric Camouf age (Ch. 26, p. 1188)
The Aroma of Fried Steak (Ch. 26, p. 1194)
Melamine Toxicity and Multiple Hydrogen Bonding (Ch. 26, p. 1200)
The Microbiome (Ch. 26, Really?, p. 1207)
Neanderthal Genes (Ch. 26, p. 1212)
Aspartame Intolerance (Ch. 26, p. 1215)

Burnet moths 
use the 
glucose-bound 
cyanohydrin 

linamarin as an HCN 
reservoir for chemical 
defense. Enzymes catalyze the 
hydrolysis of the acetal unit to 
liberate acetone cyanohydrin, 
which then releases the toxic 
gas. Females seek out males 
with high levels of linamarin, 
which is passed on as a 
remarkable “nuptial gift” 
during their mating.

Linamarin

Glucose Acetone
cyanohydrin

warhead

OH

OHO

HO
OH

O

CN

Really
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NEW AND UPDATED TOPICS
As with all new editions, each chapter has been carefully reviewed and revised.

NEW entries, updates, and improvements include:

Expanded and improved coverage of reactivity and selectivity (Ch. 3)
Updated coverage of the ozone layer (Ch. 3)
Updated presentation of diastereomeric relationships (Ch. 5)
New section: The SN2 Reaction at a Glance (Ch. 6)
Improved section on retrosynthetic analysis (Ch. 8)
Improved presentation of � molecular orbital formation (Chs. 14 and 15)
New section: Nucleophilic trapping of carbocations is nonstereoselective (Ch. 12)
Expanded coverage of the stereochemistry of additions to alkenes (Ch. 12)
Revised section: Alkynes in Nature and Medicine (Ch. 13)
Updated coverage of carbon allotropes, including graphene (Ch. 15)
Expanded coverage of the reversibility of carbonyl reactions (Chs. 17 and 18)
New section: Enolate formation can be regioselective (Ch. 18)
Updated coverage of stereoselective aldol reactions in nature and in the laboratory: 
 Organocatalysis (Ch. 18)

Expanded coverage of competitive pathways and reversibility in intramolecular aldol 
condensation reactions (Ch. 18)

Expanded coverage of soaps, unsaturated fatty acids, and bioplastics (Ch. 19)
New Road Map: Hydride Reductions (Ch. 20)
Updated and expanded coverage of physiologically active amines (Ch. 21)
Updated coverage of bisphenol A and resveratrol (Ch. 22)
Expanded and improved coverage of glutathione as an antioxidant (Ch. 22)
Revised coverage of the Claisen condensation (Ch. 23)
Updated “Top Ten” Drug List (Ch. 25)
Expanded coverage of nucleosides in medicine (Ch. 26)

How to obtain a Nobel Prize: peeling off graphene 
from graphite using Scotch tape.
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SUPPLEMENTS
Student and Instructor Support

STUDENT ANCILLARY SUPPORT
We believe a student needs to interact with a concept several times in a variety of scenarios to 
obtain a practical understanding. With that in mind, W. H. Freeman has developed the most 
comprehensive student learning package available.

Printed Resources
Study Guide and Solutions Manual, by Neil Schore, University of California, Davis
ISBN: 1-4641-6225-5
Written by Organic Chemistry coauthor Neil Schore, this invaluable manual includes chapter 
introductions that highlight new materials, chapter outlines, detailed comments for each chapter 
section, a glossary, and solutions to the end-of-chapter problems, presented in a way that 
shows students how to reason their way to the answer.

Workbook for Organic Chemistry: Supplemental Problems and Solutions, by Jerry Jenkins, 
Otterbein College
ISBN: 1-4292-4758-4
Jerry Jenkins’ extensive workbook provides approximately 80 problems per topic with full 
worked-out solutions. The perfect aid for students in need of more problem-solving practice, 
the Workbook for Organic Chemistry can be paired with any organic chemistry text on the 
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market. For instructors interested in online homework, W. H. Freeman has also placed these 
problems in WebAssign (see below).

Molecular Model Set
ISBN: 0-7167-4822-3
A modeling set offers a simple, practical way for students to see, manipulate, and investigate 
molecular behavior. Polyhedra mimic atoms, pegs serve as bonds, oval discs become orbitals. 
W. H. Freeman is proud to offer this inexpensive, best-of-its-kind kit containing everything 
you need to represent double and triple bonds, radicals, and long pairs of electrons—including 
more carbon pieces than are offered in other sets.

Free Media Resource
Student Companion Web Site
The Organic Chemistry Book Companion Web site, accessed at www.whfreeman.com/organic7e, 
provides a range of tools for problem solving and chemical explorations. They include, among 
others:

• Student self-quizzes
• An interactive periodic table of the elements
• Author lecture videos
• Animations
• Reaction and Nomenclature Exercises, which are drag-and-drop exercises designed for 

memorization
• Animated Mechanisms for reference and quizzing
• To access additional support, including the ChemCasts, Organic Flashcards, and ChemNews 

from Scientif c American, students can upgrade their access through a direct subscription to 
the Premium component of the Web site.

Premium Media Resource
The Organic Chemistry Book Companion Web site, which can be 
accessed at www.whfreeman.com/organic7e, contains a wealth of 
Premium Student Resources. Students can unlock these resources 
with the click of a button, putting extensive concept and problem-
solving support right at their f ngertips. Some of the resources 
available are: 

ChemCasts replicate the face-to-face experience of watching 
an instructor work a problem. Using a virtual whiteboard, the 
Organic ChemCast tutors show students the steps involved 
in solving key Worked Examples, while explaining the con-
cepts along the way. The Worked Examples featured in the 
ChemCasts were chosen with the input of organic chemistry 
students.

ChemNews from Scientifi c American provides an up-to-the-
minute streaming feed of organic chemistry-related new stories 
direct from Scientif c American magazine. Stay on top of the 
latest happenings in chemistry, all in one easy place.

Spartan Student Discount
With purchase of this text, students can also purchase Spartan Student at a signif cant discount 
at www.wavefun.com/cart/spartaned.html using the code WHFOCHEM.

P r e f a c e
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ELECTRONIC TEXTBOOK OPTIONS
For students interested in digital textbooks, W. H. Freeman offers Organic Chemistry in two 
easy-to-use formats.

The Multimedia-Enhanced e-Book
The multimedia-enhanced e-Book contains the complete text with a wealth of helpful func-
tions. All student multimedia, including the ChemCasts, are linked directly from the e-Book 
pages. Students are thus able to access supporting resources when they need them—taking 
advantage of the “teachable moment” as students read. Customization functions include in-
structor and student notes, document linking, and editing capabilities.

The CourseSmart e-Textbook
The CourseSmart e-Textbook provides the full digital text, along with tools to take notes, search, 
and highlight passages. A free app allows access to CourseSmart e-Textbooks and Android and 
Apple devices, such as the iPad. They can also be downloaded to your computer and accessed 
without an Internet connection, removing any limitations for students when it comes to reading 
digital text. The CourseSmart e-Textbook can be purchased at www.coursesmart.com.

INSTRUCTOR ANCILLARY SUPPORT
Whether you’re teaching the course for the f rst time or the hundredth time, the Instructor 
Resources that accompany Organic Chemistry should provide you with the resources you 
need to make the semester easy and eff cient.

Electronic Instructor Resources
Instructors can access valuable teaching tools through www.whfreeman.com/organic7e. These 
password-protected resources are designed to enhance lecture presentations, and include all 
the illustrations from the textbook (in .jpg and PowerPoint format),  Lecture PowerPoint slides, 
Clicker Questions, and more. Also available on the companion Web site are

• New Molecular Modeling Problems
With this edition we now offer new molecular modeling problems for almost every chapter, 
which can be found on the text’s companion Web site. The problems were written to be worked 
using the popular Spartan Student software. With purchase of this text, students can purchase 
Spartan Student at a signif cant discount from www.wavefun.com/cart/spartaned.html 
using the code WHFOCHEM. While the problems are written to be worked using Spartan 
Student, they can be completed using any electronic structure program that allows Hartree-
Fock, density functional, and MP2 calculations.

ONLINE LEARNING ENVIRONMENTS
W. H. Freeman offers the widest variety of online homework options on the market.

WebAssign Premium
For instructors interested in online homework management, WebAssign Premium features a 
time-tested, secure online environment already used by millions of students worldwide. Featur-
ing algorithmic problem generation and supported by a wealth of chemistry-specif c learning 
tools, WebAssign Premium for Organic Chemistry presents instructors with a powerful assign-
ment manager and study environment. WebAssign Premium provides the following resources:

• Algorithmically generated problems: Students receive homework problems containing 
unique values for computation, encouraging them to work out the problems on their own.

• Complete access to the multimedia-enhanced e-Book, from a live table of contents, as 
well as from relevant problem statements.

P r e f a c e
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• Graded molecular drawing problems using the popular MarvinSketch application allow 
instructors to evaluate student understanding of molecular structure. The system evaluates 
virtually “drawn” molecular structures, returning a grade as well as helpful feedback for 
common errors.

• Links to ChemCasts are provided as hints and feedback to ensure a clearer understanding 
of the problems and the concepts they reinforce.

Sapling Learning
Sapling Learning provides highly effective interactive homework and instruction that improve 
student learning outcomes for the problem-solving disciplines. They offer an enjoyable teach-
ing and effective learning experience that is distinctive in three important ways:

• Ease of Use: Sapling Learning’s easy-to-use interface keeps students engaged in problem 
solving, not struggling with the software.

• Targeted Instructional Content: Sapling Learning increases student engagement and 
comprehension by delivering immediate feedback and targeted instructional content.

• Unsurpassed Service and Support: Sapling Learning makes teaching more enjoyable 
by providing a dedicated Masters- or Ph.D.-level colleague to service instructors’ unique 
needs throughout the course, including content customization.
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Tetrahedral carbon, the essence 
of organic chemistry, exists as a 
lattice of six-membered rings in 
diamonds. In 2003, a family of 
molecules called  diamandoids  
was isolated from petroleum. 
Diamandoids are subunits of 
diamond in which the excised 
pieces are capped off with 
hydrogen atoms. An example 
is the beautifully crystalline 
pentamantane (molecular model 
on top right and picture on the 
left; © 2004 Chevron U.S.A. Inc. 
Courtesy of MolecularDiamond 
Technologies, ChevronTexaco 
Technology Ventures LLC), which 
consists of f ve “cages” of the 
diamond lattice. The top right 
of the picture shows the carbon 
frame of pentamantane stripped 
of its hydrogens and its 
superposition on the lattice 
of diamond.

  CHAPTER 1    Structure and Bonding 
in Organic Molecules 

  H ow do chemicals regulate your body? Why did 
your muscles ache this morning after last night’s 
long jog? What is in the pill you took to get rid 

of that headache you got after studying all night? 
What happens to the gasoline you pour into the gas 
tank of your car? What is the molecular composition 
of the things you wear? What is the difference between 
a cotton shirt and one made of silk? What is the origin 
of the odor of garlic? You will f nd the answers to 
these questions, and many others that you may have 
asked yourself, in this book on organic chemistry. 

 Chemistry is the study of the structure of mol-
ecules and the rules that govern their interactions. 
As such, it interfaces closely with the f elds of biol-
ogy, physics, and mathematics. What, then, is organic 
chemistry? What distinguishes it from other chemi-
cal disciplines, such as physical, inorganic, or nuclear 
chemistry? A common def nition provides a partial answer:  Organic chemistry is the chem-
istr  y of carbon and its compounds.  These compounds are called  organic molecules.  

 Organic molecules constitute the chemical building blocks of life. Fats, sugars, proteins, 
and the nucleic acids are compounds in which the principal component is carbon. So are 
countless substances that we take for granted in everyday use. Virtually all the clothes that 
we wear are made of organic molecules—some of natural f bers, such as cotton and silk; 
others artif cial, such as polyester. Toothbrushes, toothpaste, soaps, shampoos, deodorants, 
perfumes—all contain organic compounds, as do furniture, carpets, the plastic in light f xtures 
and cooking utensils, paintings, food, and countless other items. Consequently, organic chem-
ical industries are among the largest in the world, including petroleum ref ning and processing, 
agrochemicals, plastics, pharmaceuticals, paints and coatings, and the food conglomerates. 

 Organic substances such as gasoline, medicines, pesticides, and polymers have improved 
the quality of our lives. Yet the uncontrolled disposal of organic chemicals has polluted the 
environment, causing deterioration of animal and plant life as well as injury and disease to 
humans. If we are to create useful molecules— and  learn to control their effects—we need 
a knowledge of their properties and an understanding of their behavior. We must be able 
to apply the principles of organic chemistry.  



2 S t r u c t u r e  a n d  B o n d i n g  i n  O r g a n i c  M o l e c u l e sC H A P T E R  1

 This chapter explains how the basic ideas of chemical structure and bonding apply to 
organic molecules. Most of it is a review of topics that you covered in your general chem-
istry courses, including molecular bonds, Lewis structures and resonance, atomic and molec-
ular orbitals, and the geometry around bonded atoms. 

Almost everything you see in 
this picture is made of organic 
chemicals.
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  1-1     THE SCOPE OF ORGANIC CHEMISTRY: AN OVERVIEW 

 A goal of organic chemistry is to relate the structure of a molecule to the reactions that it 
can undergo. We can then study the steps by which each type of reaction takes place, and 
we can learn to create new molecules by applying those processes. 

 Thus, it makes sense to classify organic molecules according to the subunits and bonds 
that determine their chemical reactivity: These determinants are groups of atoms called 
 functional groups.  The study of the various functional groups and their respective reactions 
provides the structure of this book.  

 Functional groups determine the reactivity of organic molecules 
 We begin with the  alkanes  ,  composed of only carbon and hydrogen atoms (“hydrocarbons”) 
connected by single bonds. They lack any functional groups and as such constitute the basic 
scaffold of organic molecules. As with each class of compounds, we present the systematic 
rules for naming alkanes, describe their structures, and examine their physical properties 
(Chapter 2). An example of an alkane is ethane. Its structural mobility is the starting point 
for a review of thermodynamics and kinetics. This review is then followed by a discussion 
of the strength of alkane bonds, which can be broken by heat, light, or chemical reagents. 
We illustrate these processes with the chlorination of alkanes (Chapter 3). 

 A Chlorination Reaction 

  Energy
CH4   1   Cl2   uy   CH3OCl   1   HCl 

 Next we look at cyclic alkanes (Chapter 4), which contain carbon atoms in a ring. This 
arrangement can lead to new properties and changes in reactivity. The recognition of a 
new type of isomerism in cycloalkanes bearing two or more substituents—either on the 
same side or on opposite sides of the ring plane—sets the stage for a general discussion of 
 stereoisomerism.  Stereoisomerism is exhibited by compounds with the same connectivity 
but differing in the relative positioning of their component atoms in space (Chapter 5). 

 We shall then study the haloalkanes, our f rst example of compounds containing a 
 functional group—the carbon–halogen bond. The haloalkanes participate in two types of 
organic reactions: substitution and elimination (Chapters 6 and 7). In a  substitution  reac-
tion, one halogen atom may be replaced by another; in an  elimination  process, adjacent 
atoms may be removed from a molecule to generate a double bond. 

 A Substitution Reaction 

CH3OCl   1   K1I2   uy   CH3OI   1   K1Cl2

 An Elimination Reaction 

CH2 H2C CH2 �K� �OH

H I

CH2 � HOH � K� I�

 Like the haloalkanes, each of the major classes of organic compounds is characterized 
by a particular functional group. For example, the carbon–carbon triple bond is the func-
tional group of alkynes (Chapter 13); the smallest alkyne, acetylene, is the chemical burned 
in a welder’s torch. A carbon–oxygen double bond is characteristic of aldehydes and ketones 
(Chapter 17); formaldehyde and acetone are major industrial commodities. The amines 
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 (Chapter 21), which include drugs such as nasal decongestants and amphetamines, contain 
nitrogen in their functional group; methylamine is a starting material in many syntheses of 
medicinal compounds. We shall study the tools for identifying these molecular subunits, 
especially the various forms of spectroscopy (Chapters 10, 11, and 14). Organic chemists 
rely on an array of spectroscopic methods to elucidate the structures of unknown com-
pounds. All of these methods depend on the absorption of electromagnetic radiation at 
specif c wavelengths and the correlation of this information with structural features. 

 Subsequently, we shall encounter organic molecules that are especially crucial in bio-
logy and industry. Many of these, such as the carbohydrates (Chapter 24) and amino acids 
(Chapter 26), contain multiple functional groups. However, in  every  class of organic com-
pounds, the principle remains the same:  The structure of the molecule dete  r  mines the reac-
tions that it can undergo.  

 Synthesis is the making of new molecules 
 Carbon compounds are called “organic” because it was originally thought that they could 
be produced only from living organisms. In 1828, Friedrich Wöhler* proved this idea to be 
false when he converted the inorganic salt lead cyanate into urea, an organic product of 
protein metabolism in mammals (Real Life 1-1). 

 Wöhler’s Synthesis of Urea 

Lead cyanate Water Ammonia Urea Lead hydroxide

Pb(OCN)2 �2 H2O 2 NH3

O

C Pb(OH)22 H2NCNH2� �
B

  Synthesis,  or the making of molecules, is a very important part of organic chemistry 
(Chapter 8). Since Wöhler’s time, many millions of organic substances have been synthe-
sized from simpler materials, both organic and inorganic. †   These substances include many 
that also occur in nature, such as the penicillin antibiotics, as well as entirely new com-
pounds. Some, such as cubane, have given chemists the opportunity to study special kinds 
of bonding and reactivity. Others, such as the artif cial sweetener saccharin, have become 
a part of everyday life. 

 Typically, the goal of synthesis is to construct complex organic chemicals from simpler, 
more readily available ones. To be able to convert one molecule into another, chemists must 
know organic reactions. They must also know the physical factors that govern such pro-
cesses, such as temperature, pressure, solvent, and molecular structure. This knowledge is 
equally valuable in analyzing reactions in living systems. 

 As we study the chemistry of each functional group, we shall develop the tools both 
for planning effective syntheses and for predicting the processes that take place in nature. 
But how? The answer lies in looking at reactions step by step. 

An organic molecular architect at 
work.
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 *Professor Friedrich Wöhler (1800–1882), University of Göttingen, Germany. In this and subsequent 
biographical notes, only the scientist’s last known location of activity will be mentioned, even though 
much of his or her career may have been spent elsewhere. 

  † As of April 2012, the Chemical Abstracts Service had registered over 65 million chemical substances 
and more than 63 million genetic sequences.      
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 Reactions are the vocabulary and mechanisms are the grammar 
of organic chemistry 
 When we introduce a chemical reaction, we will f rst show just the starting compounds, or  
reactants  (also called  su  b  strates ), and the  products.  In the chlorination process mentioned 
earlier, the substrates—methane, CH 4 , and chlorine, Cl 2 —may undergo a reaction to give 
chloromethane, CH 3 Cl, and hydrogen chloride, HCl. We described the overall transforma-
tion as CH 4   1  Cl 2   n  CH 3 Cl  1  HCl. However, even a simple reaction such as this one may 
proceed through a complex sequence of steps. The reactants could have f rst formed one or 
more  unobserved  substances—call these X—that rapidly changed into the observed products. 
These underlying details of the reaction constitute the  reaction mechanism.  In our example, 
the mechanism consists of two major parts: CH 4   1  Cl 2   n  X followed by X n   CH 3 Cl  1  HCl. 
Each part is crucial in determining whether the overall reaction will proceed. 

 Substances X in our chlorination reaction are examples of  reaction intermediates,  spe-
cies formed on the pathway between reactants and products. We shall learn the mechanism 
of this chlorination process and the nature of the reaction intermediates in Chapter 3. 

 How can we determine reaction mechanisms? The strict answer to this question is, we 
cannot. All we can do is amass circumstantial evidence that is consistent with (or points 
to) a certain sequence of molecular events that connect starting materials and products (“the 

Urination is the main process by which we excrete nitrogen 
from our bodies. Urine is produced by the kidneys and then 
stored in the bladder, which begins to contract when its 
volume exceeds about 200 mL. The average human excretes 
about 1.5 L of urine daily, and a major component is urea, 
about 20 g per liter. In an attempt to probe the origins of 
kidney stones, early (al)chemists, in the 18th century, 
attempted to isolate the components of urine by crystalliza-
tion, but they were stymied by the cocrystallization with the 
also present sodium chloride. William Prout,* an English 
chemist and physician, is credited with the preparation of 
pure urea in 1817 and the determination of its accurate 
elemental analysis as CH4N2O. Prout was an avid proponent 
of the then revolutionary thinking that disease has a molecu-
lar basis and could be understood as such. This view clashed 
with that of the so-called vitalists, who believed that the 
functions of a living organism are controlled by a “vital 
principle” and cannot be explained by chemistry (or physics).

Into this argument entered Wöhler, an inorganic chem-
ist, who attempted to make ammonium cyanate, NH4

1OCN2 
(also CH4N2O), from lead cyanate and ammonia in 1828, 
but who obtained the same compound that Prout had charac-
terized as urea. To one of his mentors, Wöhler wrote, “I can 
make urea without a kidney, or even a living creature.” In 
his landmark paper, “On the Artif cial Formation of Urea,” 
he commented on his synthesis as a “remarkable fact, as it 
is an example of the artif cial generation of an organic mate-
rial from inorganic materials.” He also alluded to the signif -
cance of the f nding that a compound with an identical 
elemental composition as ammonium cyanate can have such 
completely different chemical properties, a forerunner to the 
recognition of isomeric compounds. Wöhler’s synthesis of 

urea forced his contemporary vitalists to accept the notion 
that simple organic compounds could be made in the labora-
tory. As you shall see in this book, over the ensuing decades, 
synthesis has yielded much more complex molecules than 
urea, some of them endowed with self-replicating and other 
“lifelike” properties, such that the boundaries between what 
is lifeless and what is alive are dwindling.

Apart from its function in the body, urea’s high nitrogen 
content makes it an ideal fertilizer. It is also a raw material 
in the manufacture of plastics and glues, an ingredient of 
some toiletry products and f re extinguishers, and an alterna-
tive to rock salt for deicing roads. It is produced industrially 
from ammonia and carbon dioxide to the tune of 100 million 
tons per year worldwide.

The effect of nitrogen fertilizer on wheat growth: 
treated on the left; untreated on the right.

*Dr. William Prout (1785–1850), Royal College of Physicians, 
London.

REAL LIFE: NATURE 1-1  Urea: From Urine to Wöhler’s Synthesis to Industrial Fertilizer
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 The bonds between atoms hold a molecule together. But what causes bonding? Two atoms 
form a bond only if their interaction is energetically favorable, that is, if energy—heat, for 
example—is released when the bond is formed. Conversely, breaking that bond requires 
the input of the same amount of energy. 

 The two main causes of the energy release associated with bonding are based on  Coulomb’s 
law of electric charge: 

 1. Opposite charges attract each other (electrons are attracted to protons). 

2. Like charges repel each other (electrons spread out in space). 

 Bonds are made by simultaneous coulombic attraction 
and electron exchange 
 Each atom consists of a nucleus, containing electrically neutral particles, or neutrons, and 
positively charged protons. Surrounding the nucleus are negatively charged electrons, equal 
in number to the protons so that the net charge is zero. As two atoms approach each other, 
the positively charged nucleus of the f rst atom attracts the electrons of the second atom; 
similarly, the nucleus of the second atom attracts the electrons of the f rst atom. As a result, 
the nuclei are held together by the electrons located between them. This sort of bonding is 
described by  Coulomb’s*   law:  Opposite charges attract each other with a force inversely 
proportional to the square of the distance between the centers of the charges. 

1 - 2  C o u l o m b  F o r c e s :  A  S i m p l i f i e d  V i e w  o f  B o n d i n g

postulated mechanism”). To do so, we exploit the fact that organic molecules are no more 
than collections of bonded atoms. We can, therefore, study how, when, and how fast bonds 
break and form, in which way they do so in three dimensions, and how changes in substrate 
structure affect the outcome of reactions. Thus, although we cannot strictly prove a mech-
anism, we can certainly rule out many (or even all) reasonable alternatives and propose a 
most likely pathway. 

 In a way, the “learning” and “using” of organic chemistry is much like learning and 
using a language. You need the vocabulary (i.e., the reactions) to be able to use the right 
words, but you also need the grammar (i.e., the mechanisms) to be able to converse intel-
ligently. Neither one on its own gives complete knowledge and understanding, but together 
they form a powerful means of communication, rationalization, and predictive analysis. To 
highlight the interplay between reaction and mechanism, icons are displayed in the margin 
at appropriate places throughout the text. 

 Before we begin our study of the principles of organic chemistry, let us review some 
of the elementary principles of bonding. We shall f nd these concepts useful in understand-
ing and predicting the chemical reactivity and the physical properties of organic molecules. 

Charge separation is rectif ed by 
Coulomb’s law, appropriately in 
the heart of Paris.

The Atom

Neutron

Proton

Electron

Nucleus
(Protons and
Neutrons)

− −

−

−

−

−

−+++
+

+
+ +

*Lieutenant-Colonel Charles Augustin de Coulomb (1736–1806), Inspecteur Général of the University of 
Paris, France.

ReactionRReaction

Mechanism

  1-2    COULOMB FORCES: A SIMPLIFIED VIEW OF BONDING 

 Coulomb’s Law 

 Attracting force � constant �
(�) charge � (�) charge

distance2  

 This attractive force causes energy to be released as the neutral atoms are brought 
together. The resulting decrease in energy is called the  bond strength.  
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 When the atoms reach a certain closeness, no more energy is released. The distance 
between the two nuclei at this point is called the  bond length  (Figure 1-1). Bringing the 
atoms closer together than this distance results in a sharp  increase  in energy. Why? As 
stated above, just as opposite charges attract, like charges repel. If the atoms are too close, 
the electron–electron and nuclear–nuclear repulsions become stronger than the attractive 
forces. When the nuclei are the appropriate bond length apart, the electrons are spread 
out   around both nuclei, and attractive and repulsive forces balance for maximum bonding. 
The energy content of the two-atom system is then at a minimum, the most stable situation 
(Figure 1-2). 

 An alternative to this type of bonding results from the complete transfer of an electron 
from one atom to the other. The result is two charged  ions:  one positively charged, a  cation  ,  
and one negatively charged, an  anion  (Figure 1-3). Again, the bonding is based on coulombic 
attraction, this time between two ions. 

 The coulombic bonding models of attracting and repelling charges shown in Figures 1-2 
and 1-3 are highly simplif ed views of the interactions that take place in the bonding of 
atoms. Nevertheless, even these simple models explain many of the properties of organic 
molecules. In the sections to come, we shall examine increasingly more sophisticated views 
of bonding. 

Figure 1-1 The changes in 
energy, E, that result when two 
atoms are brought into close 
proximity. At the separation 
def ned as bond length, 
maximum bonding is achieved.
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Figure 1-3 Ionic bonding. An 
alternative mode of bonding 
results from the complete transfer 
of an electron from atom 1 to 
atom 2, thereby generating two 
ions whose opposite charges 
attract each other.
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Figure 1-2 Covalent bonding. 
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electrons are found around the 
nucleus. The small circled plus 
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 We have seen that attraction between negatively and positively charged particles is a basis 
for bonding. How does this concept work in real molecules? Two extreme types of bonding 
explain the interactions between atoms in organic molecules: 

 1. A  covalent bond  is formed by the sharing of electrons (as shown in Figure 1-2). 

 2. An  ionic bond  is based on the electrostatic attraction of two ions with opposite 
charges (as shown in Figure 1-3). 

 We shall see that many atoms bind to carbon in a way that is intermediate between these 
extremes: Some ionic bonds have covalent character and some covalent bonds are partly 
ionic (polarized). 

 What are the factors that account for the two types of bonds? To answer this ques-
tion, let us return to the atoms and their compositions. We start by looking at the peri-
odic table and at how the electronic makeup of the elements changes as the atomic 
number increases. 

 The periodic table underlies the octet rule 
 The partial periodic table depicted in Table 1-1 includes those elements most widely found in 
organic molecules: carbon (C), hydrogen (H), oxygen (O), nitrogen (N), sulfur (S), chlorine (Cl), 
bromine (Br), and iodine (I). Certain reagents, indispensable for synthesis and commonly 
used, contain elements such as lithium (Li), magnesium (Mg), boron (B), and phosphorus (P). 
(If you are not familiar with these elements, refer to Table 1-1 or the periodic table on the 
inside cover.) 

 The elements in the periodic table are listed according to nuclear charge (number of 
 protons), which equals the number of electrons. The nuclear charge increases by one with 
each element listed. The electrons occupy energy levels, or “shells,” each with a f xed 
 capacity. For example, the f rst shell has room for two electrons; the second, eight; and the 
third, 18. Helium, with two electrons in its shell, and the other noble gases, with eight 
electrons (called  octets ) in their outermost shells, are especially stable. These elements show 
very little chemical reactivity. All other elements (including carbon, see margin) lack octets 
in their outermost electron shells.  Atoms tend to form molecules in such a way as to reach 
an octet in the outer electron shell and attain a noble-gas conf guration.  In the next two 
sections, we describe two extreme ways in which this goal may be accomplished: by the 
formation of pure ionic or pure covalent bonds. 

  1-3    IONIC AND COVALENT BONDS: THE OCTET RULE 

Table 1-1 Partial Periodic Table

Period       Halogens Noble gases

First H1       He2

Second Li2,1 Be2,2 B2,3 C2,4 N2,5 O2,6 F2,7 Ne2,8

Third Na2,8,1 Mg2,8,2 Al2,8,3 Si2,8,4 P2,8,5 S2,8,6 Cl2,8,7 Ar2,8,8

Fourth K2,8,8,1      Br2,8,18,7 Kr2,8,18,8

Fifth       I2,8,18,18,7 Xe2,8,18,18,8

Note: The superscripts indicate the number of electrons in each principal shell of the atom.

Carbon Atom

C2, 4

Unfilled 2nd shell:
four valence 
electrons

Filled 1st shell 

Exercise 1-1

(a) Redraw Figure 1-1 for a weaker bond than the one depicted. (b) Write the elements in Table 1-1 
from memory.
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 In pure ionic bonds, electron octets are formed 
by transfer of electrons 
 Sodium (Na), a reactive metal, interacts with chlorine, a reactive gas, in a violent manner 
to produce a stable substance: sodium chloride. Similarly, sodium reacts with f uorine (F), 
bromine, or iodine to give the respective salts. Other alkali metals, such as lithium and 
potassium (K), undergo the same reactions. These transformations succeed because both 
reaction partners attain noble-gas character by the  transfer of outer-shell electrons,  called 
 valence electrons,  from the alkali metals on the left side of the periodic table to the  halogens 
on the right. 

 Let us see how this works for the ionic bond in sodium chloride. Why is the interaction 
energetically favorable? First, it takes energy to remove an electron from an atom. This 
energy is the  ionization potential (IP)  of the atom. For sodium gas, the ionization energy 
amounts to 119 kcal mol 2  1 .* Conversely, energy may be released when an electron attaches 
itself to an atom. For chlorine, this energy, called its  electron aff nity (EA),  is  2 83 kcal mol 2  1 . 
These two processes result in the transfer of an electron from sodium to chlorine. Together, 
they require a net energy  input  of 119  2  83  5  36 kcal mol 2  1 . 
 

21 e
[Na2,8,1 uy [Na2,8]1 IP 5 119 kcal mol21 (498 kJ mol21)

 Sodium cation Energy input required
 (Neon conf guration)

 11 e
Cl2,8,7 uy [Cl2,8,8]2 EA 5 283 kcal mol21 (2347 kJ mol21)

 Chloride anion Energy released
 (Argon conf guration)

Na 1 Cl uy Na1 1 Cl2 Total 5 119 2 83 5 36 kcal mol21 (151 kJ mol21)

 Why, then, do the atoms readily form NaCl? The reason is their electrostatic attraction, 
which pulls them together in an ionic bond. At the most favorable interatomic distance 
[about 2.8 Å (angstroms) in the gas phase], this attraction releases (see Figure 1-1) about 
120 kcal mol 2  1  (502 kJ mol 2  1 ). This energy release is enough to make the reaction of 
sodium with chlorine energetically highly favorable [ 1 36  2  120  5   2 84 kcal mol 2  1  
( 2 351 kJ mol 2  1 )]. 

 Formation of Ionic Bonds by Electron Transfer 

 Na2,8,1 � Cl2,8,7 ¡ [Na2,8]� [Cl2,8,8] �, or NaCl (�84 kcal mol�1) 

 More than one electron may be donated (or accepted) to achieve noble-gas electronic 
conf gurations. Magnesium, for example, has two valence electrons. Donation to an appropriate 
acceptor produces the corresponding doubly charged cation, Mg 2  1 , with the electronic struc-
ture of neon. In this way, the ionic bonds of typical salts are formed. 

 A representation of how charge (re)distributes itself in molecules is given by electro-
static potential maps. These computer-generated maps not only show a form of the mole-
cule’s “electron cloud,” they also use color to depict deviations from charge neutrality. Excess 
electron density—for example, a negative charge—is shown in colors shaded toward red; 
conversely, diminishing electron density—ultimately, a positive charge—is shown in colors 
shaded toward blue. Charge-neutral regions are indicated by green. The reaction of a sodium 
atom with a chlorine atom to produce Na 1 Cl 2  is pictured this way in the margin. In the 
product, Na 1  is blue, Cl 2  is red. 

*This book will cite energy values in the traditional units of kcal mol21, in which mol is the abbreviation 
for mole and a kilocalorie (kcal) is the energy required to raise the temperature of 1 kg (kilogram) of 
water by 18C. In SI units, energy is expressed in joules (kg m2 s22, or kilogram-meter2 per second2). The 
conversion factor is 1 kcal 5 4184 J 5 4.184 kJ (kilojoule), and we will list these values in parentheses 
in key places.

Na Cl

Na+ Cl–

+

Sodium chloride

Chlorine
atom

Sodium
atom
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 A more convenient way of depicting valence electrons is by means of dots around the 
symbol for the element. In this case, the letters represent the nucleus including all the 
electrons in the inner shells, together called the  core conf guration.  

 Valence Electrons as Electron Dots 

Li Be B C N O F

Al Si P SNa ClMg

  Electron-Dot Picture of Salts  

ð�ðCl

j

šj
2 e transfer

1 e transfer
Na

ð�Cljš �

� ð�ð

]

Clšð�Clš �

2ŠMg

j

� Mg2�

Na�

[ 2

 The hydrogen atom is unique because it may either lose an electron to become a bare 
nucleus, the  proton,  or accept an electron to form the  hydride ion,  [H, i.e., H : ] 2 , which 
possesses the helium conf guration. Indeed, the hydrides of lithium, sodium, and potassium 
(Li 1 H 2 , Na 1 H 2 , and K 1 H 2 ) are commonly used reagents. 

j ð
�1 e

H
Hydride ion

]�

�1 e

Helium configuration

Proton

[H]�

[H

H

EA � �18 kcal mol�1 (�75 kJ mol�1)

Bare nucleus IP � 314 kcal mol�1 (1314 kJ mol�1) j

 In covalent bonds, electrons are shared to achieve octet 
confi gurations 
 Formation of ionic bonds between two identical elements is diff cult because the electron 
transfer is usually very unfavorable. For example, in H 2 , formation of H 1 H 2  would require 
an energy input of nearly 300 kcal mol 2  1  (1255 kJ mol 2  1 ). For the same reason, none of 
the halogens, F 2 , Cl 2 , Br 2 , and I 2 , has an ionic bond. The high IP of hydrogen also prevents 
the bonds in the hydrogen halides from being ionic. For elements nearer the center of the 
periodic table, the formation of ionic bonds is unfeasible, because it becomes more and 
more diff cult to donate or accept enough electrons to attain the noble-gas conf guration. 
Such is the case for carbon, which would have to shed four electrons to reach the helium 
electronic structure or add four electrons for a neon-like arrangement. The large amount of 
charge that would develop makes these processes very energetically unfavorable. 

jŠjÄ šð�ðC4� C 4��4 e �4 e

Helium
configuration

Neon
configuration

C

Very difficult

 Instead,  covalent bonding  takes place: The elements  share  electrons so that each 
atom attains a noble-gas conf guration. Typical products of such sharing are H 2  and HCl. In 
HCl, the chlorine atom assumes an octet structure by sharing one of its valence electrons 
with that of hydrogen. Similarly, the chlorine molecule, Cl 2 , is diatomic because both 
component atoms gain octets by sharing two electrons. Such bonds are called  covalent 
single bonds.  

Exercise 1-2

Draw electron-dot pictures for ionic LiBr, Na2O, BeF2, AlCl3, and MgS.




